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Abstract

The paper investigates the design of secret sharing that is
immune against cheating (as defined by the Tompa-Woll at-
tack). We examine secret sharing with binary shares and se-
crets. Bounds on the probability of successful cheating are
given for two cases. The first case relates to secret sharing
based on bent functions and results in a non-perfect scheme.
The second case considers perfect secret sharing built on
highly nonlinear balanced Boolean functions.

1. Introduction

Secret sharing is a cryptographic tool that allows to con-
vert the control over cryptographic algorithms and protocols
from a single participant to a group of participants. Secret
sharing embedded into encryption/decryption algorithms
gave rise to the well-known concept of group-oriented cryp-
tography in which the cryptographic algorithm can be suc-
cessfully executed only if there is a big enough group of
participants who have agreed to collaborate.

The assumption about trust is vital to make the con-
cept of group cryptography work. Numerous examples,
however, show that in some circumstances, people can be
tempted to behave dishonestly especially when they can get
a substantial advantage with no risk involved. The group
oriented cryptography applies two basic approaches to com-
bat cheating:� verification of the final state of the protocol or algo-

rithm – this allows to identify whether or not the fi-

nal result is correct or in other words, participants are
able to detect whether or not the protocol has failed to
achieve the expected result (additionally collaborating
participants may be able to identify the cheater(s)),� removal of the main incentive of cheating – a potential
cheater is not able to get advantage over other (honest)
participants. In other words, an unsuccessful run of the
protocol/algorithm provides no useful information for
the cheater.

In the verification approach, some information about secret
sharing is made public and can be used to verify whether
the supplied input data or the results are consistent. Par-
ticular implementations of verification varies depending on
whether the secret sharing in hand is conditionally or un-
conditionally secure.

The second approach is, in general, more efficient (no
verification information to store and no extra verification
steps) and more importantly is a real option when the fi-
nal result, if wrong, will be instantly identified and rejected
while providing no information about the correct result to
the cheater. The cheater would be equivalent to a partici-
pant who does not agree to collaborate but, for some rea-
sons, does not want to say “no”.

The paper deals with cheating prevention in uncondition-
ally secure secret sharing. We assume that at the pooling
stage, the cheating participant fails to provide the correct
shares while other participants follow honestly the protocol.
The combiner recovers the secret are returns to all currently
active participants. We expect that the cheater will not be
“substantially” better off in guessing the secret before and
after the pooling.



The paper is structured as follows. Section 2 sets up the
scene for the paper and introduces the nonlinear secret shar-
ing. Section 3 gives a background of binary sequences that
is used further in the paper. Defining functions of secret
sharing are defined and their properties are investigated in
Section 4. Sections 5 and 6 discuss immunity against cheat-
ing when defining functions of secret sharing are bent or
highly nonlinear balanced boolean functions. Closing con-
clusions and future research directions close the paper.

2. Model of Secret Sharing

We are going to use the following notations;� P = fP1; : : : ; Png is a group ofn participants who
collectively hold a secretK 2 K,� K is a set from which the secretK is drawn. When it
is chosen at random (with the uniform probability), we
writeK 2R K.� S is a set from which all shares are selected. The no-
tationsi 2 S reads that a sharesi assigned to the par-
ticipantPi has been chosen fromS.� � is the access structure or the collection of all sub-
groups ofP that are authorised to jointly recover the
secret.� (t; n) threshold secret sharing allows any subgroup
with at leastt members to recover the secret. In other
words,� = fAj#A � tg.

Secret sharing can be seen as a set ofdistribution rules
[12], where a distribution rule is a functionf : P ! S that
represents possible distribution of shares to the participants.
In other words, secret sharing is a setF = SK2K FK
whereFK is a distribution rule corresponding to the se-
cretK. Equivalently,F can be presented in the form of
distribution tableT . The table has(n + 1) columns – the
first one includes secrets and the othern ones list shares as-
signed to participants(P1; : : : ; Pn), respectively. Each row
of the distribution table specifies the secret for a collection
of shares held byP . Note thatFK can be seen as a part of
the distribution table with rows whose first entry isK. This
table is denoted byTK .

Given secret sharing withF and the access structure�.
Secret sharing isperfectif� any authorised subgroupA 2 � is able to identify the

unique secret (i.e. they can jointly identify a single row
in the tableT ),� any unauthorised subgroupA =2 � has to choose secret
from the set of possible candidates with the probabil-
ity of success equal to1#K assuming thatK is chosen

at random (i.e. the collection of rows corresponding
to the shares held byA consists of secrets which are
uniformly distributed).

Tompa and Woll [13] observed that all linear secret shar-
ing schemes are vulnerable to cheating by dishonest partic-
ipants. Their attack further referred to as the TW attack,
proceeds as follows. Given a(t; n) threshold scheme and
a linear functioǹ A : St ! K which for a collection oft
shares and the currently active subgroupA = fP1; : : : ; Ptg 2 � uniquely determines the secretK.
Assume that our cheater isP1.� At the pooling stage, instead of the valid shares1, P1

submits a fake ones�1 = s1 + Æ.� The combiner takes all shares and computes the secretK� = `A(s�1; s2; : : : ; s
). The secretK� is returned
toA via secure channels.� Knowing the modificationÆ, the cheater computes� = `A(Æ; 0; : : : ; 0), and recovers the valid secretK = K� � �. Note thatP1 does not know shares
of honest participants fromA.

The attack works because linearity of the scheme assures
the cheater thatK� = `A(s�1; s2; : : : ; s
) = `A((s1; : : : ; s
)+(Æ; 0; : : : ; 0)) = K +�

As the result, honest participants are left with an invalid
secret while the cheater has the valid one.

Publicly verifiable secret sharing (see [3, 5, 11, 9]) pro-
vide a solution to this problem in the conditionally secure
setting. In the unconditionally secure setting, Rabin and
Ben-Or [6] used a system of linear equations to validate
shares before they are passed into the combiner. Carpen-
tieri in [1] constructed a similar scheme but with shorter
shares. Carpentieri, De Santis and Vaccaro [2] argued that
share expansion is unavoidable to detect cheating.

In this work we address cheating prevention in the un-
conditionally secure setting by removing linearity, whichis
the main property of secret sharing that makes cheating suc-
cessful. We study nonlinear secret sharing. An additional
attraction of this approach is that it uses a similar model to
that already well developed in the theory of S-boxes. One
would expect that some results obtained there are applicable
in cheating prevention. We concentrate on the binary case
whenK = S = f0; 1g and arithmetics is done inGF (2).
3. Binary Sequences

We consider a mappingf fromVn toGF (2) whereVn is
the vector space ofn tuples of elements fromGF (2). f is



also called afunctiononVn. Thetruth table of a functionf is a sequence defined by(f(�0); f(�1); : : : ; f(�2n�1)),
where�0 = (0; : : : ; 0; 0), �1 = (0; : : : ; 0; 1), : : :, �2n�1 =(1; : : : ; 1; 1). Each�j is said to be thebinary representation
of integerj, j = 0; 1; : : : ; 2n� 1. A functionf is said to be
balancedif its truth table contains an equal number of zeros
and ones. Anaffinefunctionf onVn is a function that takes
the form off(x) = f(x1; : : : ; xn) = a1x1�� � ��anxn�
,
wherex = (x1; : : : ; xn) and� denotes the addition inGF (2), aj ; 
 2 GF (2), j = 1; 2; : : : ; n. Furthermoref
is called alinear function if 
 = 0. It is easy to verify
that any nonzero affine function is balanced. Leth; i denote
the scalar product of two vectors. There precisely2n linear
functions onVn. We can denote all the2n linear functions
by '0; '1; : : : ; '2n�1, where'j(x) = h�j ; xi. TheHam-
ming weightof a vector� 2 Vn, denoted byHW (�), is
the number of nonzero coordinates of�. The Hamming
weight of a functionf , denoted byHW (f), is the number
of nonzero terms in the truth table off . Thenonlinearity
of a functionf onVn, denoted byNf , is the minimal Ham-
ming distance betweenf and all affine functions onVn, i.e.,Nf = mini=1;2;:::;2n+1 HW (f �  i) where 1,  2, : : :, 2n+1 are all the affine functions onVn. High nonlin-
earity can be used to resist a linear attack. From [4], we
know thatNf � 2n�1 � 2 12n�1. A special class of func-
tions is called bent. There exist equivalent definitions of
bent functions [8]. For example, a functionf on Vn is
said to bebent if and only if f(x) � f(x � �), is bal-
anced where� is any nonzero vector inVn. Bent func-
tions have a series of interesting properties. For exam-
ple, the number of zeros of any bent function onVn is�2 12n�1 + 2n�1 [8], in other words, the number of ones
of any bent function onVn is �2 12n�1 + 2n�1. The sum
of any bent function onVn and any affine function onVn
is bent. Bent functions are not balanced and bent func-
tions onVn exist only whenn is even. Furthermore, it
is well known that any bent functionf on Vn achieves
the maximum nonlinearity, i.e.,Nf = 2n�1 � 2 12n�1.
We illustrate bent functions by an example. It is easy to
prove that bothg(x1; : : : ; x6) = x1x2 � x3x4 � x5x6 andh(x1; : : : ; x6) = 1 � x1x2 � x3x4 � x5x6 are bent func-
tions onV6. ThenNg = Nh = 26�1 � 23�1 = 28. By a
straightforward verification, we find that the number of zero
of g is 36 = 23�1 + 26�1 and the number of ones ofg is28 = �23�1 + 26�1 while the number of zero ofh is 28
and the number of ones ofh is 36.

4. Defining Functions of Secret Sharing

Given a(n; n) threshold scheme defined by its distribu-
tion tableT . We define a functionf : Vn ! f0; 1g and
fix an integer
; 1 � 
 � n, which points the position (col-
umn) of the cheaterP
 in T . We introduce the following

notations:� � = (s1; : : : ; sn) is the sequence of shares held byP
and the secretK = f(�),� �� = (s1; : : : ; s
�1; 1 � s
; s
+1; : : : ; sn) is the se-
quence of shares submitted to the combiner whereP

modified her share. The sequenceÆ
 = (0; : : : ; 0; 1; 0; : : : ; 0) contains all zero except the
-th position and represents modification done by the
cheater,K� = f(��) is the invalid secret returned by
combiner,� 
�� = f(x1; : : : ; x
�1; s
; x
+1; : : : ; xn)j f(x1; : : : ;x
�1; 1� s
; x
+1; : : : ; xn) = K�g is the set of
all shares taken from rows ofT containing� andK
which are consistent with the invalid secret returned
by the combiner. The set determines the view of the
cheater after getting backK� from the combiner.� 
� = f(x1; : : : ; x
�1; s
; x
+1; : : : ; xn)jf(x1; : : : ;x
�1; s
; x
+1; : : : ; xn) = Kg

The functionf defines the secret sharing. We are go-
ing to call it the defining function. The vectorÆ
 =(0; : : : ; 0; 1; 0; : : : ; 0) is called thecheating vector. � =(s1; : : : ; sn) is called theoriginal vector. The value of�
;� = #(
�� \ 
�)=#
��, where#X denotes the num-
ber of elements in the setX , expresses the probability of
successful cheating with respect to� = (s1; : : : ; sn). As
the original vector� = (s1; : : : ; sn) is always in
�� \ 
�,
the probability of successful cheating is always nonzero or�
;� > 0.

Theorem 1 Given secret sharing with its distribution tableT and the defining functionf : Vn ! f0; 1g. Let 
 be
any integer with1 � 
 � n and� = (s1; : : : ; sn) be any
vector inVn. Then there exists a vector�0 2 Vn such that�
;� + �
;�0 = 1 otherwise�
;� = 1.

Proof. Write �� = (s1; : : : ; s
�1; 1 � s
; s
+1; : : : ; sn).
SetK = f(�) andK� = f(��). Let
�� = f(x1; : : : ; x
�1; s
; x
+1; : : : ; xn)jf(x1; : : : ;x
�1;�s
; x
+1; : : : ; xn) = K�g
and
� = f(x1; : : : ; x
�1; s
; x
+1; : : : ; xn)jf(x1; : : : ;x
�1; s
; x
+1; : : : ; xn) = Kg

Note that
�� can be expressed as
�� = 
�0 [ 
�1 where
�0 = f(x1; : : : ; x
�1; s
; x
+1; : : : ; xn)jf(x1; : : : ;x
�1; 1� s
; x
+1; : : : ; xn) = K� andf(x1; : : : ; x
�1; s
; x
+1; : : : ; xn) = Kg



and
�1 = f(x1; : : : ; x
�1; s
; x
+1; : : : ; xn)jf(x1; : : : ;x
�1; 1� s
; x
+1; : : : ; xn) = K� andf(x1; : : : ; x
�1; s
; x
+1; : : : ; xn) = 1�Kg
Obviously
�� \ 
� = 
�0. Thus�
;� = #(
�� \ 
�)=#
�� = #
�0=#
�� (1)

There exist two cases to be considered:
�1 6= ;, where;
denotes the empty set, and
�1 = ;.

The case 1:
�1 6= ;. Thus there exists a vector�0 2 
�1 where�0 = (s01; : : : ; s0
�1; s
; s0
+1; : : : ; s0n) sat-
isfying f(s01; : : : ; s0
�1; 1 � s
; s0
+1; : : : ; s0n) = K� andf(s01; : : : ; s0
�1; s
; s0
+1; : : : ; s0n) = 1�K.

Using the cheating scheme on�0, that is the original vec-
tor, we have
��0 = f(x1; : : : ; x
�1; s
; x
+1; : : : ; xn)jf(x1; : : : ;x
�1; 1� s
; x
+1; : : : ; xn) = K�g

Thus
��0 = 
��. Let
�0 = f(x1; : : : ; x
�1; s
; x
+1; : : : ; xn)jf(x1; : : : ;x
�1; s
; x
+1; : : : ; xn) = 1�Kg
Obviously
��0 \ 
�0 = 
�1. Thus�
;�0 = #(
��0 \ 
�0)=#
��0 = #
�1=#
�� (2)

Combing (1) and (2), we can prove that�
;�+�
;�0 = 1.
The case 2:
�1 = ;. Thus
�� = 
�0(= 
0) and thus
�� \ 
� = 
�0 = 
��. This proves that�
;� = #(
�� \
�)=#
�� = 1. The proof is completed.
Theorem 1 implies that the probability of successful

cheating is always higher than12 .

5. Secret Sharing Based on Bent Defining
Functions

As we are dealing with binary caseK 2 f0; 1g, the
cheater can always succeed with probability12 . Ideally,
one would hope that the probability of cheater success is
as close as possible to12 or j�
;� � 12 j is as small as possi-
ble. Our considerations are restricted to the case whereP
includes an even number of participants (n is even). This re-
striction results from the fact that the defining functionf is
bent (bent functions exist for an even number of variables).

Theorem 2 Letf(x) = x1x2�� � ��x2k�1x2k wheren =2k � 4 (from [8] f is a bent functionV2k ! f0; 1g). Given
secret sharing based on the defining functionf . Then

(i) the probability of successful cheating equals�
;� = � 12 � 2�n2 if s
 = 012 if s
 = 1
for any integer
 with 1 � 
 � n and any vector� =(s1; : : : ; sn),

(ii) the nonlinearity off satisfiesNf = 2n�1 � 2 12n�1.

Proof Without the loss of generality, we assume that the
cheater isPn so Æ
 = �� � � = (0; : : : ; 0; 1) and 
 =n. The dealer has set up secret sharing for the vector� =(s1; : : : ; s2k) 2 Vn with the secretf(�) = K 2 GF (2).
The cheaterPn submits a false share so the vector used by
the combiner is�� and the returned secret isK� = f(��),
whereK� 2 GF (2).

First we consider the case whens2k = 0. The set
�� = f(x1; : : : ; x2k�1; 0)jf(x1; : : : ; x2k�1; 1) = K�g
or
�� = f(x1; : : : ; x2k�1; 0)jx1x2 � � � � � x2k�3x2k�2�x2k�1 = K�g

can be represented as
�� = 
�0 [ 
�1. where
�0 = f(x1; : : : ; x2k�2; 0; 0)jx1x2 � � � � � x2k�3x2k�2= K�g
and
�1 = f(x1; : : : ; x2k�2; 1; 0)jx1x2 � � � � � x2k�3x2k�2= 1�K�g
Similarly, the set
� = f(x1; : : : ; x2k�1; 0)jf(x1; : : : ; x2k�1; 0) = Kg

or
� = f(x1; : : : ; x2k�1; 0)jx1x2 � � � � � x2k�3x2k�2= Kg
can be divided into two disjoint subsets
� = 
0 [ 
1

where
0 = f(x1; : : : ; x2k�2; 0; 0)jx1x2 � � � � � x2k�3x2k�2= Kg
and
1 = f(x1; : : : ; x2k�2; 1; 0)jx1x2 � � � � � x2k�3x2k�2= Kg



The invalid secretK� can be either equal toK orK�1.
Without the loss of generality, we assume thatK = 1�K�
and then
�� \ 
� = 
�1 = 
1.

Note thatx1x2�� � ��x2k�3x2k�2 is a bent function onV2k�2 [8]. From a property of bent functions mentioned in
Section 3, we know that#
1 = 22k�3�2k�2. On the other
hand, it is easy to see thatf(x1; : : : ; x2k�1; 1) is balanced.
Thus#
�� = 22k�2 and thus�n;� = #(
�� \ 
�)=#
�� = #
1=#
�� = 12 � 2�k= 12 � 2�n2

Next we turn to the cases2k = 1. Again we take into
account the set
�� = f(x1; : : : ; x2k�1; 1)jf(x1; : : : ; x2k�1; 0) = K�g
or
�� = f(x1; : : : ; x2k�1; 1)jx1x2 � � � � � x2k�3x2k�2= K�g

and its partition into
�� = 
�0 [ 
�1 where
�0 = f(x1; : : : ; x2k�2; 0; 1)jx1x2 � � � � � x2k�3x2k�2= K�g
and
�1 = f(x1; : : : ; x2k�2; 1; 1)jx1x2 � � � � � x2k�3x2k�2= K�g
Obviously#
�0 = #
�1.

Similarly, we treat the set
� = f(x1; : : : ; x2k�1; 1)jf(x1; : : : ; x2k�1; 1) = Kg
or
� = f(x1; : : : ; x2k�1; 1)jx1x2 � � � � � x2k�3x2k�2�x2k�1 = Kg

and its two subsets
� = 
0 [ 
1 where
0 = f(x1; : : : ; x2k�2; 0; 1)jx1x2 � � � � � x2k�3x2k�2= Kg
and
1 = f(x1; : : : ; x2k�2; 1; 1)jx1x2 � � � � � x2k�3x2k�2= 1�Kg

Note that the invalid secretK� can be either equal toK
or K � 1. Without the loss of generality, we assume thatK� = 1�K and then
�� \ 
� = 
�1 = 
1.

Therefore�n;� = #(
�� \ 
�)=#
�� = #
�1=#
�� = 12 :
Therefore we have proved the statement(i) of the theorem
for Æn = �� �� = (0; : : : ; 0; 1).

Using the same arguments, we can prove the part (i) of
the theorem forÆ
, 
 = 1; : : : ; n.

Since bent functions achieve the maximum nonlinearity
we have proved the statement(ii) . The proof is completed.

We now illustrate nonlinear secret sharing with the bent
defining function.

Example 1 Let the groupP include four participants and
the defining functionf(x) = x1x2 � x3x4. It is easy to
find the truth table off which is fully characterised by the
sequence0; 0; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1; 1; 1; 1; 0. The secret
sharing can be described as the following table:f S1 S2 S3 S40 0 0 0 00 0 0 0 10 0 0 1 01 0 0 1 10 0 1 0 00 0 1 0 10 0 1 1 01 0 1 1 10 1 0 0 00 1 0 0 10 1 0 1 01 1 0 1 11 1 1 0 01 1 1 0 11 1 1 1 00 1 1 1 1
Assume that the dealer fixed the shares� = (1; 1; 0; 0) 2V4 and the secretK = f(1; 1; 0; 0) = 1. Our cheater isP4. Thus Æ4 = (0; 0; 0; 1) and 
 = 4. The combiner
obtains the sequence�� = (1; 1; 0; 1) with the last share
changed by the cheater and returns the invalid secretK� =f(1; 1; 0; 1) = 1. On receivingK�, the cheater can identify
the set
�� = f(x1; x2; x3; 0)jf(x1; x2; x3; 1) = 1g which
is 
�� = f(0; 0; 1; 0); (0; 1; 1; 0); (1; 0; 1; 0); (1; 1; 0; 0); g.
The set
� = f(x1; x2; x3; 0)jf(x1; x2; x3; 0) = 1g be-
comes
� = f(1; 1; 0; 0); (1; 1; 1; 0)g.

The intersection
��\
� = f(1; 1; 0; 0)g and the proba-
bility of successful cheating is�4;� = #(
��\
�)=#
�� =14 = 12 � 2�n2 wheren = 4 and� = (1; 1; 0; 0). Using
Theorem 2 or by a straightforward verification, we get thatNf = 6 = 2n�1 � 2 12n�1 wheren = 4.

Nonlinear secret sharing based on bent functions overGF (2) possesses the following properties:



� The resulting secret sharing is non-perfect. To make it
perfect, the defining function must be balanced.� The threshold parametert and the numbern of par-
ticipants inP are restricted. The threshold parameter
indicates the number of shares uniquely identifying a
single row of the tableT or equivalently, the number
of variables for the defining functionf . We could add
as many participants as we can define vectors inVt
whose any collection oft are independent. It is easy to
verify that if x1; : : : ; xt 2 Vt are independent then we
can create only one extra vectorx1 � : : : � xt so that
any collection oft vectors are independent. In other
words, inGF (2), we can define two classes of non-
linear secret sharing:(n; n) or (n; n + 1) wheren is
even.

6. Secret Sharing with Balanced Defining
Functions

As noted already, perfectness of secret sharing requires
defining functions to be balanced. LetW = f
j
 2Vm andHW (
) is eveng. Clearly, W is an (m � 1)-
dimensional subspace ofVm and thusW contains2m�1
vectors. The setW � = (W � f(0; : : : ; 0)g) [ f(1; : : : ; 1)g (3)

whereW � is regarded as a multiple set whenm is even as it
contains the vector(1; : : : ; 1) twice. LetA be an2m�1�m
matrix whose2m�1 rows include all the2m�1 vectors ofW
andA� be an2m�1 �m matrix whose2m�1 rows include
all the2m�1 vectors ofW �. It is easy to see that each row
ofA has an even Hamming weight and each column ofA is
balanced. ThereforeA� satisfies (a) the Hamming weight of
each row is at least two, (b) each column precisely contains2m�2 � 1 zeros and2m�2 + 1 ones. Note that ifm is odd
thenA� contains distinct2m�1 rows, and ifm is even thenA� contains2m�1 � 2 distinct rows and two all-one rows.

Theorem 3 Let n � 1 (mod 4), m be odd andn =2m � 1. Let � be a mapping fromVm�1 to W � de-
fined in (3) such that�(�) 6= �(�0) whenever� 6=�0, Let f(x) = �(y)zT be the defining function of
secret sharing, wherex = (x1; : : : ; x2m�1), y =(x1; : : : ; xm�1) and z = (xm; : : : ; x2m�1), Further letÆ
 = (0; : : : ; 0; 1; 0; : : : ; 0) 2 V2m�1 be the cheating vec-
tor, where the
-th coordinate is nonzero. Then for any vec-
tor � = (s1; : : : ; s2m�1) 2 V2m�1, we have the following:

(i) the probability of success of the cheaterP
 2 P is�
;� = � 12 � 2�m+1 if m � 
 � 2m� 112 if 1 � 
 � m� 1

(ii) the resulting secret sharing is perfect or in other
words, the defining functionf is balanced,

(iii) the nonlinearity off satisfiesNf = 22m�2 � 2m�1.
Proof Note that � can be expressed as�(y) =(h1(y); : : : ; hm(y)) where eachhj is a function onVm�1.
Thusf(x) = �(y)zT = h1(y)xm � � � � � hm(y)x2m�1.
Given an arbitrary vector� = (s1; : : : ; s2m�1) 2 V2m�1
and the corresponding secretf(�) = K whereK 2GF (2). The invalid secret isf(� � Æ
) = K� whereK� 2 GF (2).

There exist two cases to be considered:m � 
 � 2m�1
and1 � 
 � m� 1.
The case 1:m � 
 � 2m� 1. The set
�� = f(x1; : : : ; x
�1; s
; x
+1; : : : ; x2m�1)jf(x1; : : : ; x
�1; 1� s
; x
+1; : : : ; x2m�1)= K�g
Then it can be represented as
�� = f(x1; : : : ; x
�1; s
; x
+1; : : : ; x2m�1)jh1(y)xm � � � � � h
�m(y)xt�1�h
�m+1(y)(1� s
)� h
�m+2(y)x
+1� � � � � hm(y)x2m�1 = K�g
and
�� = 
�0 [ 
�1, where
�0 = f(x1; : : : ; x
�1; s
; x
+1; : : : ; x2m�1)jh1(y)xm � � � � � h
�m(y)x
�1�h
�m+2(y)x
+1 � � � � � hm(y)x2m�1 = K�

whenh
�m+1(y) = 0g
and
�1 = f(x1; : : : ; x
�1; s
; x
+1; : : : ; x2m�1)jh1(y)xm � � � � � h
�m(y)x
�1 � 1� s
�h
�m+2(y)x
+1 � � � � � hm(y)x2m�1 = K�

whenh
�m+1(y) = 1g
Due to the property (a) of the matrixA�,(h1(y); : : : ; h
�m(y); h
�m+2(y); : : : hm(y)) 6= (0; : : : ; 0)

for anyy 2 Vm�1. Thus for any fixedy 2 Vm�1, the linear
equation onxm; : : : ; x2m�1,h1(y)xm � � � � � h
�m(y)x
�1 � h
�m+2(y)x
+1� � � � � hm(y)x2m�1 = K�

has precisely2m�1 solutions. Due to the property (b) of
the matrixA�, h
�m+1 takes on the value of zero precisely



2m�2�1 times. Therefore#
�0 = 2m�1(2m�2�1). Using
the same arguments, we argue that#
�1 = 2m�1(2m�2 +1). Therefore#
�� = 22m�2. Consider the set
� = f(x1; : : : ; x
�1; s
; x
+1; : : : ; x2m�1)jf(x1; : : : ; x
�1; s
; x
+1; : : : ; x2m�1) = Kg
It can be specialized as
� = f(x1; : : : ; x
�1; s
; x
+1; : : : ; x2m�1)jh1(y)xm� � � � � h
�m(y)x
�1 � h
�m+1(y)s
�h
�m+2(y)x
+1 � � � � � hm(y)x2m�1 = Kg
The set can be represented as
� = 
0 [ 
1, where
0 = f(x1; : : : ; x
�1; s
; x
+1; : : : ; x2m�1)jh1(y)xm � � � � � h
�m(y)x
�1�h
�m+2(y)x
+1 � � � � � hm(y)x2m�1 = K

whenh
�m+1(y) = 0g
and
1 = f(x1; : : : ; x
�1; s
; x
+1; : : : ; x2m�1)jh1(y)xm � � � � � h
�m(y)x
�1 � s
�h
�m+2(y)x
+1 � � � � � hm(y)x2m�1 = K

whenh
�m+1(y) = 1g
Note thatK� is identified with eitherK or 1 �K. WhenK� = K, it is easy to see that
�0 = 
0. Thus we have
�� \ 
� = 
�0 and thus�
;� = #(
�� \ 
�)=#
�� =#
�0=#
�� = 12 � 2�m+1. Similarly, whenK� = 1�K,
�1 = 
1 thus
�� \ 
� = 
�1 and thus�
;� = #(
�� \
�)=#
�� = #
�1=#
�� = 12 + 2�m+1.
The case 2:1 � 
 � m � 1. Write ys
 =(x1; : : : ; x
�1; s
; x
+1; : : : ; xm�1) 2 Vm�1 andy1�s
 =(x1; : : : ; x
�1; 1 � s
; x
+1; : : : ; xm�1) 2 Vm�1. Then
we can write
�� = f(ys
 ; z)j�(y1�s
)zT = K�g and
� = f(ys
 ; z)j�(ys
)zT = Kg. Note that�(�) 6= 0
for any � 2 Vm�1. Thus for any fixedy1�s
 , the lin-
ear equation�(y1�s
)zT = K� on z = (xm; : : : ; x2m�1)
has precisely2m�1 solutions. Therefore#
�� = 2m�2 �2m�1 = 22m�3. Note further that�(ys
) 6= �(y1�s
).
Thus the group of linear equations�(y1�s
)zT = K�
and �(ys
)zT = K are linearly independent and thus#(
�� \ 
�) = 2m�2 � 2m�2 = 22m�4. Finally we have�
;� = #(
�� \ 
�)=#
�� = 12 . The first part of the theo-
rem has been proved.

Now we consider the perfectness of the scheme. Since�(�) 6= 0 for any � 2 Vm�1, f(�; z) = �(�)zT is a
nonzero linear function onVm for each fixed� 2 Vm�1,
and thus it is balanced. This proves that the functionf(x) = �(y)zT is balanced onV2m�1.

We are coming to the last part of our proof related to the
nonlinearity of the defining functionf . From [10], the func-
tion defined in Theorem 3 can be expressed in an equivalent
form. From the same literature, the nonlinearity of this kind
of function can be computed easily and thus we have proved
the statement(iii) . However we now would like give a di-
rect proof. Note that any affine function on V2m�1 can
be written as (x) = C � �yT � 
zT , wherey; � 2 Vm�1
and
 2 Vm x = (y; z) andC is any constant inGF (2).HW (f �  ) = HW (C � �yT � 
zT � �(y)zT )= X�2VkHW (C � ��T � 
zT � �(�)zT )

Clearly for any fixed� 2 Vm�1 with �(�) 6= 
, C ���T � 
zT � �(�)zT is a non-constant affine function onVm and thus balanced. In this case we haveHW (C���T�
zT � �(�)zT ) = 2m�1. Thus we obtainHW (f �  ) (4)= X�2VkHW (C � ��T � 
zT � �(�)zT )= X�(y)6=
 2m�1 = 2m�1(2m�1 � 1) (5)

On the other hand, there uniquely exists a vector�0 2 Vm�1
with �(�0) = 
. For�0, we haveHW (C � ��0T � 
zT � �(�0)zT ) =HW (C � ��0T ) = ( 0 if C � ��0T = 02m�1 if C � ��0T = 1
SinceC, as the constant term of an affine function, can arbi-
trarily take on values inf0; 1g. Thus we can alway modifyC so thatC���0T = 0, and thenHW (C���0T �
zT ��(�0)zT ) = 0. We have proved thatNf = 22m�2 � 2m�1.
Therefore the proof is completed.

The matrix A� has different properties depending
whetherm is odd or even. We now consider the case of
evenm.

Theorem 4 Let n � 3 (mod 4), m be even andn =2m � 1. Let� be a mapping fromVm�1 to W � defined in
(3) such that (a)�(0; : : : ; 0) = �(1; : : : ; 1) = (1; : : : ; 1),
(b) �(�) 6= �(�0) if � 6= �0 except for the case that� = (0; : : : ; 0) and�0 = (1; : : : ; 1). Let f(x) = �(y)xT ,
wherex = (x1; : : : ; x2m�1), y = (x1; : : : ; xm�1) andz = (xm; : : : ; x2m�1), be the defining function of the se-
cret sharing. LetÆ
 = (0; : : : ; 0; 1; 0; : : : ; 0) 2 V2m�1 be
the cheating vector, where only
-th coordinate is nonzero.
Then for any vector� = (s1; : : : ; s2m�1) 2 V2m�1, we
have the following:



(i) the probability of success of the cheaterP
 2 P is�
;� = � 12 � 2�m+1 if m � 
 � 2m� 112 if 1 � 
 � m� 1
(ii) the resulting secret sharing is perfect or in other

words, the defining functionf is balanced,

(iii) the nonlinearity off satisfiesNf = 22m�2 � 2m.

Proof. The proof of the statement(i) is similar to that of
Theorem 3 because of the properties (a) and (b) of the map-
ping� mentioned in Theorem 4. The statements(ii) can be
derived in the same way as in the proof of the previous the-
orem. As mentioned in the proof of the previous theorem,
we do not need prove the statement(iii) directly. From [10],
the nonlinearity of the functionf can be determined easily.
The proof is completed.

7. Conclusions and Further Extensions

We defined nonlinear secret sharing and investigated its
properties for the binary case. The main motivation was
to make secret sharing immune against the TW attack. We
considered two classes of secret sharing. The first class is
based on bent functions and clearly leads to non-perfect
secret sharing. The second class with balanced defining
functions includes perfect secret sharing schemes. For both
classes, we have proved the bounds for the probability of
successful cheating. The work can be extended by conduct-
ing investigations into nonlinear secret sharing with shares
from an arbitraryGF (q), whereq 6= 2. An interesting ex-
tension is to examine case with many cheaters who conspire
against honest participants.
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