Nonlinear Secret Sharing Immune against Cheating
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Abstract nal result is correct or in other words, participants are
able to detect whether or not the protocol has failed to
The paper investigates the design of secret sharing that is achieve the expected result (additionally collaborating
immune against cheating (as defined by the Tompa-Woll at- participants may be able to identify the cheater(s)),
tack). We examine secret sharing with binary shares and se- o ) ) )
crets. Bounds on the probability of successful cheating are ® fémoval of the main incentive of cheating — a potential
given for two cases. The first case relates to secret sharing ~ Cheater is notable to get advantage over other (honest)
based on bent functions and results in a non-perfect scheme. ~ Participants. In other words, an unsuccessful run of the
The second case considers perfect secret sharing built on  Protocol/algorithm provides no useful information for
highly nonlinear balanced Boolean functions. the cheater.

In the verification approach, some information about secret

sharing is made public and can be used to verify whether
1. Introduction the supplied input data or the results are consistent. Par-

ticular implementations of verification varies dependimg o

Secret sharing is a cryptographic tool that allows to con- Whethfer the secret sharing in hand is conditionally or un-
vert the control over cryptographic algorithms and protsco  conditionally secure. o o
from a single participant to a group of participants. Secret ~1he second approach is, in general, more efficient (no
sharing embedded into encryption/decryption algorithms Verification information to store and no extra verification
gave rise to the well-known concept of group-oriented cryp- Steps) and more importantly is a real option when the fi-
tography in which the cryptographic algorithm can be suc- nal result, if wrong, will be instantly identified and rejedt

cessfully executed only if there is a big enough group of While providing no information about the correct result to
participants who have agreed to collaborate. the cheater. The cheater would be equivalent to a partici-

The assumption about trust is vital to make the con- pant who does not agree to collaborate but, for some rea-
cept of group cryptography work. Numerous examples, SONS, does not want to say “no”.
however, show that in some circumstances, people can be The paper deals with cheating prevention in uncondition-
tempted to behave dishonestly especially when they can ge@lly Sécure secret sharing. We assume that at the pooling
a substantial advantage with no risk involved. The group stage, the cheating participant fails to provide the carrec

oriented cryptography applies two basic approaches to com-Shares while other participants follow honestly the protoc
bat cheating: The combiner recovers the secret are returns to all cuyrentl

active participants. We expect that the cheater will not be
¢ verification of the final state of the protocol or algo- “substantially” better off in guessing the secret beford an
rithm — this allows to identify whether or not the fi- after the pooling.



The paper is structured as follows. Section 2 sets up the at random (i.e. the collection of rows corresponding
scene for the paper and introduces the nonlinear secret shar ~ to the shares held byl consists of secrets which are
ing. Section 3 gives a background of binary sequences that uniformly distributed).
is used further in the paper. Defining functions of secret _
sharing are defined and their properties are investigated in 1ompaand Woll [13] observed that all linear secret shar-

Section 4. Sections 5 and 6 discuss immunity against cheat-!ng scheme; are vulnerable to cheating by dishonest partic-
ing when defining functions of secret sharing are bent or ipants. Their attack further referred to as the TW attack,

highly nonlinear balanced boolean functions. Closing con- Proceeds as follows. Given(@, n) threshold scheme and

: . > : :
clusions and future research directions close the paper. & linéar function 4 - S — K which for a collection oft
shares and the currently active subgroup

. A ={P,...,P;} € T uniquely determines the secitkt

2. Model of Secret Sharing Assume that our cheater i3 .

We are going to use the following notations; e Atthe pooling stage, instead of the valid share P,
submits a fake ong; = sy + 4.

e P ={Py,...,P,} is a group ofn participants who

collectively hold a secrek’ € K, e The combiner takes all shares and computes the secret
. _ . . K* = €a(s],52, ..., 5:). The secref{* is returned
e K is a set from which the secréf is drawn. When it to A via secure channels.
is chosen at random (with the uniform probability), we
write K €5 K. e Knowing the modificationd, the cheater computes
_ ) A = £4(6,0,...,0), and recovers the valid secret
oS Is a set from which all shares are selected. The no- K = K* — A. Note thatP, does not know shares
tations; € S reads that a sharg assigned to the par- of honest participants from.

ticipant P; has been chosen frof

) _ The attack works because linearity of the scheme assures
e [' is the access structure or the collection of all sub- {he cheater that

groups ofP that are authorised to jointly recover the
secret. K* = la(s],s2,...,8:) =La((s1,-..,8¢)

e (t,n) threshold secret sharing allows any subgroup +(5,0,...,0) =K +A

with datlleistt Amerzb>erts to recover the secret. In other As the result, honest participants are left with an invalid
words,I' = {A[#A > t}. secret while the cheater has the valid one.

Secret sharing can be seen as a setistfibution rules Publicly verifiable secret sharing (see [3, 5, 11, 9]) pro-
[12], where a distribution rule is a functioh: P — S that vide a solution to this problem in the conditionally secure
represents possib]e distribution of shares to the paﬂmlm Setting. In the Unconditiona”y secure Setting, Rabin and
In other words, secret sharing is a $Bt = U Fr Ben-Or [6] used a system of linear equations to validate
where Fx is a distribution rule corresponding to the se- shares before they are passed into the combiner. Carpen-
cret K. Equivalently,F can be presented in the form of tieri in [1] constructed a similar scheme but with shorter
distribution tableT". The table hagn + 1) columns — the  Shares. Carpentieri, De Santis and Vaccaro [2] argued that
first one includes secrets and the othemes list shares as- ~ Share expansion is unavoidable to detect cheating.
signed to participantéP,, . . ., P,), respectively. Each row In this work we address cheating prevention in the un-
of the distribution table specifies the secret for a coltecti ~ conditionally secure setting by removing linearity, whish
of shares held bf. Note thatFx can be seen as a part of the main property of secret sharing that makes cheating suc-
the distribution table with rows whose first entryfis This ~ cessful. We study nonlinear secret sharing. An additional

table is denoted by attraction of this approach is that it uses a similar model to
Given secret Sharing Wit and the access structure that already well developed in the theory of S-boxes. One
Secret sharing iperfectif would expect that some results obtained there are appdicabl

in cheating prevention. We concentrate on the binary case

e any authorised subgroup € T' is able to identify the  whenk = & = {0, 1} and arithmetics is done iBF(2).
unigue secret (i.e. they can jointly identify a single row

in the tableT), 3. Binary Sequences

e any unauthorised subgroup¢ T" has to choose secret
from the set of possible candidates with the probabil- ~ We consider a mappinffromV,, to GF'(2) whereV,, is
ity of success equal t%% assuming thak is chosen  the vector space of tuples of elements fror@F'(2). f is



also called dunctionon V,,. Thetruth table of a function notations:
f is a sequence defined y (), f(a1),..., flam_1)),
whereag = (0,...,0,0),a; = (0,...,0,1),...,qon_1 =
(1,...,1,1). Eachy; is said to be theinary representation

e a=(s1,...,8,) is the sequence of shares heldBy
and the secrek’ = f(a),

ofintegerj,_j =0,1,...,2" — 1 A function f is said to be o 0 = (51,...,8c-1,1 ® S¢,Sct1,-..,5y) IS the se-
balancedf its truth table contains an equal number of zeros quence of shares submitted to the combiner wiigre
and ones. Amffinefunction f onV, is a function that takes modified her share. The sequence

the formoff(z) = f(x1,...,2n) = G121 ®- - - Bantn Sc, 6. =(0,...,0,1,0,...,0) contains all zero except the
wherez = (z1,...,z,) and® denotes the addition in c-th position and represents modification done by the
GF(2), aj,c € GF(2), j = 1,2,...,n. Furthermoref cheaterK* = f(a*) is the invalid secret returned by
is called alinear function if ¢ = 0. It is easy to verify combiner,

that any nonzero affine function is balanced. {étdenote

the scalar product of two vectors. There precis¥ljinear o O ={(z1, ..., Te1, Sey Tegty - )| f@1, .00,y
functions onV;,. We can denote all th2” linear functions Te1, 1® 8¢, Tegr, ..., T,) = K*} is the set of
by o, ¢1,. .., p2m_1, Wherep;(z) = (a;,z). TheHam- all shares taken from rows @f containinge and K
ming weightof a vectora € V,,, denoted byHW (), is which are consistent with the invalid secret returned
the number of nonzero coordinates@f The Hamming by the combiner. The set determines the view of the
weight of a functionf, denoted byH W (f), is the number cheater after getting badk* from the combiner.

of nonzero terms in the truth table ¢f Thenonlinearity

of a functionf onV;,, denoted byV, is the minimal Ham- * Qo = {(@1,- s Temty 50, Tepts - T f 25,
ming distance betweehand all affine functions oft,, i.e., Teo1s Ser Tetds -y ) = K}

Ny = min;—y 5 on+t HW(f © ¢;) wherey, o, ..., The functionf defines the secret sharing. We are go-
Yon+1 are all the affine functions of,,. High nonlin-  ing to call it the defining function The vectord, =
earity can be used to reslist a linear attack. From [4], we (0 ... 0,1,0,...,0) is called thecheating vectar o =
know thatV; < 2°~' — 2371, A special class of func- (s, ... s,) is called theoriginal vector The value of
tions is called bent. There exist equivalent definitions of Pea = #( N QL) /#Q%, where#X denotes the num-
bent functions [8]. For example, a functighon V,, is  ber of elements in the séf, expresses the probability of
said to bebentif and only if f(z) & f(z & ), is bal-  successful cheating with respectdo= (si,...,s,). As
anced wherex is any nonzero vector i¥,,. Bent func- the original vectory = (s1, ..., s,) is always inQ* N Q,,

tions have a series of interesting properties. For exam-the probability of successful cheating is always nonzero or
ple, the number of zeros of any bent function ©p is Pe.a > 0.

42371 4 gn—1 [8], in other words, the number of ones

of any bent function or/, is F23n=1 4 271 The sum Theorem 1 Given secret sharing with its distribution table
of any bent function orV,, and any affine function o, T and the defining functiorf : V;, — {0,1}. Letc be
is bent. Bent functions are not balanced and bent func-any integer withl < ¢ < n anda = (s1,...,s,) be any
tions onV,, exist only whenn is even. Furthermore, it vector inV,,. Then there exists a vectaf € V,, such that
is well known that any bent functioif on V,, achieves  pc,o + pe,or = 1 Otherwisep. , = 1.

the maximum nonlinearity, i.eN; = 271 — 2371, .

We illustrate bent functions by an example. It is easy to Proof. Write o =*(517 oo Se=1s 1 ® Sc,Set1s---58n).

prove that bothy(z1, ..., z6) = z122 ® 2324 B T576 AN SetK = f(a) andK™* = f(a”). Let

h(z1,...,2¢) = 1 ® z120 ® 1374 D T526 Are bent func- "

tiC()nS onVs. )ThenNg =N, = 26—1 _ 93-1 _ 98 Bya Qa = {(xla-..,xcflysc;xc+17-..,1’n)|f(1'1,...,

straightforward verification, we find that the number of zero Te1,DSe; Tett, .-, Tn) = KT}

of g is 36 = 23! + 261 and the number of ones gfis and

28 = —2371 4+ 26=1 while the number of zero af is 28

and the number of ones éfis 36. Qo = (@1 Te1ySerTortser s @) f (@1,
LTe—1,Sc; Loty --- ?'Tn) = K}

4. Defining Functions of Secret Sharing
Note that(2’, can be expressed &3, = Qf U (2] where

Given a(n,n) threshold scheme defined by its distribu-
tion table7. We define a functiorf : V;, — {0,1} and
fix an integere; 1 < ¢ < n, which points the position (col- Te—1,10 8¢, Tey1,...,2n) = K™ and
umn) of the cheateP. in 7. We introduce the following fl@y,. o 1,8, Teg1y e, Tn) = K}

05 = {(@1,.-,Te1,8c,Tet1y- - xn)| f(T1,. .-,



{(z1,.. coxp)| flx, .

$6_1,1@80,$c+1,---,$n) :K* a'nd
f(xh'"7xcflascyxc+17"'7xn) = ]-EBK}

s Te—15S¢y Lo, -

Obviously©2}, N Q, = QF. Thus

Pe,a = #(Q:; n Qa)/#gg = #QS/#Q:; ()
There exist two cases to be consider@¢l:# (), wherel)
denotes the empty set, afid = 0.
The case 197 # (. Thus there exists a vector

o' € Qf wherea' = (s},...,5,_1,5¢,5.,1,--.,5,) sat-

i 1 ! ! ! ! —

isfying f(s},...,s. 1,1 ® sc,5.,1,...,5,) = K* and
! ! ! !

F(sh, o8t 1 8,80y --008,) =10 K.

Using the cheating scheme ah that is the original vec-
tor, we have

QO = {(@1,-, Tem1,Sey Teg1y - )| f(T1, 01,
Tee1, 1 ® SeyTeiy .o 2n) = K}

ThusQ}, = Q7. Let

Qo = {(@1,-- o1, 86, Teg1, - )| f (21,0 -,
Zee1,SeyLoqly---yLn) =1 DK}

ObviouslyQ*, N Q, = QF. Thus
Pear = #(Q5 N Qo) /#Q5 = #Q7/#Q5, 2)

Combing (1) and (2), we can prove that, + pc,or = 1.

The case 2Qf = 0. ThusQ = Q4(= Qo) and thus
2 NQ, = QF = QL. This proves thap, , = #(Q5 N
0.)/#Q% = 1. The proof is completed.

Theorem 1 implies that the probability of successful
cheating is always higher than

5. Secret Sharing Based on Bent Defining
Functions

As we are dealing with binary cas€ € {0,1}, the
cheater can always succeed with probability Ideally,

one would hope that the probability of cheater success is

as close as possible g)or |pc,a — %| is as small as possi-
ble. Our considerations are restricted to the case wRere
includes an even number of participansg even). This re-
striction results from the fact that the defining functipis
bent (bent functions exist for an even number of variables).

Theorem 2 Let f(z) = z122 B - - - @ Tog—1 T2, Wheren =
2k > 4 (from [8] f is a bent functioriz, — {0, 1}). Given
secret sharing based on the defining functforihen

(i) the probability of successful cheating equals

Pe,o = {

for any integerc with 1 < ¢ < n and any vecton =
(S1,-+,Sn)s

L

+27% ifs, =0

ifs.=1

NN

1

(ii) the nonlinearity off satisfiesVy = 27! — 2371,

Proof Without the loss of generality, we assume that the
cheater isP,, sod. a*®da = (0,...,0,1) and¢
n. The dealer has set up secret sharing for the vecter
(s1,-.-,52) € Vi, with the secretf(a) = K € GF(2).
The cheatelP,, submits a false share so the vector used by
the combiner isy* and the returned secretié* = f(a*),
whereK* € GF(2).
First we consider the case whe#, = 0. The set

QO ={(zq, ..

'7x2k7170)|f(x1,-..,kafl,]_) = K*}

or
Q, = {(3717 e a$2k—1,0)|351352 DD Top—3Tok—2
PTop_1 = K*}
can be represented &, = Qf U QF. where
Q= {(z1,...,2212,0,0)|7122 © -+ - D Top 372k 2
= K*}
and
O = {(z1,..,2212,1,0) 7122 © - - - D Top 372k 2
=10 K"}
Similarly, the set
Qoz = {(371,...,$2k_1,0)|f($1,...,iL’Qk_l,O) = K}
or
Qo = {(@1,.-.,2251,0)[2122 D - - D Top_372p 2
= K}

can be divided into two disjoint subseds, = Qy U
where

Q = {(@1,...,72%2,0,0)|2122 D - B Top 3T 2
= K}

and

M = {(z1,...,221-2,1,0)|T122 D - - B Top—3T2p—2

=K}



The invalid secref{* can be either equal t& or K & 1.
Without the loss of generality, we assume that= 1 & K*
and ther2, N Q, = QF = Q4.

Note thatr1zs P - - - D xop_3T25—2 iS @ bent function on
Var—2 [8]. From a property of bent functions mentioned in
Section 3, we know tha#Q; = 22*-34+2%=2, On the other
hand, it is easy to see thafz,...,z2;_1, 1) is balanced.
Thus#Q* = 22k=2 and thus

—i2’”

#(05 N Qo) /#Q, = #0 /#0, =
1

Z49°%
2

Next we turn to the casey, = 1. Again we take into
account the set

Pn,a

Q, =A{(@1,.. ., 221, V| f(z1,...,72,-1,0) = K"}
or
Q, = {(@1, -, 221, 1)[2122 @ - D Top 372k 2

= K*}

and its partition intd2}, = Qg U Q7 where

QS = {(w17"')$2k—2)07 1)|$1$2 DD Tok—3T2k—2
= K*}

and

O = {(@1,.. o2, L, 1)|2122 © -+ - D Top 372 2
= K*}

Obviously#Qg; = #Q7.
Similarly, we treat the set

Qoz = {(xla"'7w2k—1a1)|f(w17"'a$2k—1a1) = K}
or
Qo = {(@1,...,22p-1,1)|T122 D -+ D Top—3T2p—2
®rop—1 = K}
and its two subset@, = Q¢ U ; where
D = {(z1,...,221-2,0,1)|T1Z2 D -+ B Top—3T2p—2
= K}
and
M = {(®1,..., 2202, L,1)|7122 D - - ® Top_3T2p_2
=1¢ K}

Note that the invalid secrét™* can be either equal t&
or K & 1. Without the loss of generality, we assume that
K* =16 K and ther2?, N Q, = QF = Q.

Therefore
* * * * 1
= #(Qa N QW)/#QQ = #Ql/#ﬂa = 5

Therefore we have proved the statem@nbf the theorem
foré, =ada*=(0,...,0,1).

Using the same arguments, we can prove the part (i) of
the theoremfob.,c=1,...,n

Since bent functions achieve the maximum nonlinearity
we have proved the stateméii}. The proof is completed.

We now illustrate nonlinear secret sharing with the bent
defining function.

Pn,a

Example 1 Let the groupP include four participants and
the defining functionf (z) = z122 ® xz3z4. It is easy to

find the truth table off which is fully characterised by the
sequenc®,0,0,1,0,0,0,1,0,0,0,1,1,1,1,0. The secret
sharing can be described as the following table:

[ 51 S Sz Sa

—_ - O OO OO OO0
el el e =R = N =N el el e B e B @)
o = - O O OO OO

—_— OO R OO, MF OOFKRMFOO

O OFHOFHOFH,HOHFH,HOFHORHO

o
—_
—_

Assume that the dealer fixed the shasies- (1,1,0,0) €
V4 and the secrek’ = f(1,1,0,0) = 1. Our cheater is
P,. Thusé, = (0,0,0,1) andc = 4. The combiner
obtains the sequenee® = (1,1,0, 1) with the last share
changed by the cheater and returns the invalid séctet
f(1,1,0,1) = 1. On receivingK*, the cheater can identify
the Sem; = {($1,1‘2,1‘3,0)|f(1‘1,1‘2,113‘3, ].) = ].} which
is Q* = {(0,0,1,0),(0,1,1,0),(1,0,1,0), (1,1,0,0), }.
The set?, = {(351,372,5[73, 0)|f($1,$2,333, 0) = 1} be-
comes?, = {(1,1,0,0),(1,1,1,0)}.

The intersectiof?’ N, = {(1,1,0,0)} and the proba-
bility ofsuccessful cheating jg,o = #(Q5N0Q) /#Q% =
1 =1 —27% wheren = 4anda = (1,1,0,0). Using
Theorem 2orbya stra|ghtforward verification, we get that
N; =6=2""" — 237~ wheren = 4.

Nonlinear secret sharing based on bent functions over
GF(2) possesses the following properties:



e The resulting secret sharing is non-perfect. To make it
perfect, the defining function must be balanced.

The threshold parameteérand the numbern of par-
ticipants inP are restricted. The threshold parameter
indicates the number of shares uniquely identifying a
single row of the tablg™ or equivalently, the number
of variables for the defining functiofi. We could add
as many participants as we can define vector§in
whose any collection afare independent. It is easy to
verify that if zq, ..., z; € V; are independent then we
can create only one extra vector & ... ® x; so that
any collection oft vectors are independent. In other
words, inGF(2), we can define two classes of non-
linear secret sharingin,n) or (n,n + 1) wheren is
even.

Secret Sharing with Balanced Defining
Functions

(ii) the resulting secret sharing is perfect or in other
words, the defining functiofiis balanced,

(iii) the nonlinearity off satisfiesV; = 22m=2 — 2m=1,

Proof Note that 7 can be expressed as(y)
(h1(y), ..., hm(y)) where eacth; is a function onV;,,_; .
Thusf(z) = 7(y)2" = hi()Tm © - @ hin(Y)T2m-1.
Given an arbitrary vector = (s1,...,52m-1) € Vam—1
and the corresponding secr¢{a) K where K €
GF(2). The invalid secret isf(a ® §.) = K* where
K* € GF(2).

There exist two cases to be considereds ¢ < 2m —1
andl <c¢<m — 1.
The case 1in < ¢ < 2m — 1. The set

As noted already, perfectness of secret sharing requires

defining functions to be balanced. L&’ {7vlv €
Vin andHW () is every. Clearly, W is an (m — 1)-
dimensional subspace &f, and thusW contains2™~'
vectors. The set

W*:(W_{(07---70)})U{(17--'71)} (3)
whereWW* is regarded as a multiple set whenis even as it
contains the vectd(l, . .., 1) twice. LetA be am2™ ! x m

matrix whose™~! rows include all the™ ! vectors ofit’
andA* be an2™~! x m matrix whose2™~! rows include

all the2™~1! vectors ofilV’*. It is easy to see that each row
of A has an even Hamming weight and each columd &
balanced. Thereforé* satisfies (a) the Hamming weight of
each row is at least two, (b) each column precisely contains
2m=2 _ 1 zeros an®™~2 + 1 ones. Note that ifn is odd
then A* contains distinc2™~! rows, and ifm is even then

A* contain®2™~! — 2 distinct rows and two all-one rows.

Theorem3 Letn = 1 (mod 4), m be odd andn
2m — 1. Letw be a mapping fromV,,_; to W* de-
fined in (3) such thatr(8) # =(B’) wheneverg #

B, Let f(x) = =(y)zT be the defining function of
secret sharing, wherer = (z1,...,Z2m—-1), ¥y =
(1,...,Zm—1) @nd z = (zy,...,T2m—1), Further let

6. = (0,...,0,1,0,...,0) € V5,1 be the cheating vec-
tor, where thes-th coordinate is nonzero. Then for any vec-
tora = (s1,...,8m-1) € Vam—1, We have the following:

(i) the probability of success of the cheafere P is
L2 ml

Pec,a :{ %

2

ifm<ec<2m-1
fl<e<m-1

Q; = {(xla"'7xcflyscaxc+17'"7x2m71)|
@, o 21,1 ® Se, Teg1y -5 Tam—1)
= K*}
Then it can be represented as
Q; = {(xl,---,wc—l,sc,wc+1,.-.,$2m_1)|

hl (y)xm D---D hcfm(y)xtfl
She—m+1(Y) (1 © 8¢) & he—mt2(Y)Tet1
e D hm(y)w2m—1 = K*}

andQ}, = Qg U Qf, where

Qa — {(xla"'awc—1a80a$0+1a'"a$2’m—1)|
hy (y)wm SERRRNS hc—m(y)wc—l
Ohe—mt2(Y)Ter1 - O hin(Y)r2m—1 = K~
whenh._,+1(y) = 0}

and

{1, Te1, Sey Tty - vy T2ame1)]

hy (y)azm SERRRNS hc‘—m(y)xc‘—l D1 s,
EBhc’fmw%(y)xcﬁ% D---D hm(y)x2mfl =K~
whenh._.,4+1(y) = 1}

Due to the property (a) of the matrix*,

(hl (y)a vy hC*m(y)7 hc*m+2(y)7 v hm(y)) ;é (07 cee

foranyy € V,,,_1. Thus for any fixedy € V,,,_1, the linear
equation on,,, . .

,0)
y T2am—1,
hi(Y)Tm @ @ hem(y)Te1 D hemi2(y)Tesr

S D b (Y)T2m—1 = K~

has preciselg™ ! solutions. Due to the property (b) of

the matrixA*, h._,+1 takes on the value of zero precisely



2m~2_1times. ThereforgtQ} = 2m~1(2m2—1). Using
the same arguments, we argue t&; = 2™ 1(2m 2 +
1). Therefore#Qy, = 2>m=2, Consider the set

Qoz = {(xla"'7xcflascaxc+17'"7x2m71)|

f(xla"'7xcflascaxc+17'"7x2m71) - K}
It can be specialized as

{(z1,.. - Tam—1)|h1 (Y)zm
D---D hcfm(y)xcfl D hcf’m+1(y)80
@hcfm+2(y)l‘c+1 D---D hm(y)x2mfl = K}

Qa = 3 Le—15Se, Loty - -

The set can be representedbs= 2y U €24, where

QO = {(561,...,wc_1,80,$c+1,---,$2m—1)|
hy (y)wm S RRRR hc—m(y)wc—l
Ohe—m+2(Y)Tes1 B ® b (Y)T2m—1 = K
whenh,_,4+1(y) = 0}
and
Ql = {(561,...,wc_1,80,$c+1,---,$2m—1)|

hl (y)xm b---D hcfm(y)xcfl ©® Se
@hcfm+2(y)xc+1 D---D hm(y)x2m71 =K
whenh._m+1(y) =1}

Note thatK* is identified with eitherK or 1 & K. When
K* = K, itis easy to see thddj = Qy. Thus we have
QN Qy = Qf and thuspe o = #(Q% N Q) /#Q; =

#Q5/#Q; = 1 —2-™FL Similarly, whenK* =16 K,

OF = Q thusQ: N Q, = QF and thusp., = #(QL N

Qo) [0 = #O7 [#Q = L +27m+,

Thecase2:1 < ¢ <

m — 1.  Write y;, =
(T1, -y Tem1, 8, Toq1y e vy Tme1) € Vipo1 andyigs. =
(1‘17"'71‘07171 @ Scaxc+17"-axmfl) € mel- Then

we can writeQ = {(y,.,2)|7(y10s.)27 = K*} and
Qo = {(ysr,2)I7(ys)2" = K}. Note thatr(8) # 0
for any 8 € V,,_1. Thus for any fixedyigs., the lin-
ear equationr(yigs. )27 = K*onz = (Tm,. .., Tom_1)
has precisel\2™ ! solutions. ThereforgtQ* = 2m~2 .
2m-1 = 22m=3_ Note further thatr(ys.) # 7(y1ms.)-
Thus the group of linear equationgy;q,.)2z7 = K*
and 7(ys, )27 = K are linearly independent and thus
#(Q:NQ,) = 2m=2.2m=2 = 22m~1_ Finally we have
Pe,a = #(Q, N Q) /#Q% = £, The first part of the theo-
rem has been proved.

Now we consider the perfectness of the scheme. Sincez = (zp,,- -

7(B) # 0foranyB € Vi_1, f(B,2) = n(B)zT is a
nonzero linear function oiv,,, for each fixeds € V,,_1,

We are coming to the last part of our proof related to the
nonlinearity of the defining functiofi. From [10], the func-
tion defined in Theorem 3 can be expressed in an equivalent
form. From the same literature, the nonlinearity of thiskin
of function can be computed easily and thus we have proved
the statementiii). However we now would like give a di-
rect proof. Note that any affine functiah on V3,,_; can
be written as)(z) = C @ By @ vzT, wherey, B € Vs
andy € V,, z = (y,2) andC'is any constant itz F'(2).

HW(C @ pyT @ v2T @ n(y)z7)

= Z HW(C @ o™ @ 72" @ 7(0)2")
o€V}

HW(f @)

Clearly for any fixedsr € V,,_1 with 7(0) # v, C &
BoT @ v2T @ n(0)2T is a non-constant affine function on
V,» and thus balanced. In this case we h&i& (CoB0T @
v2T @ n(0)2T) = 2™~'. Thus we obtain

HW(f ® ) (4)
=Y HW(C ® 80T @27 @ n(0)27)
oc€EVy
= ) oml=omriemTl - (5)
m(y)#y

On the other hand, there uniquely exists a veetot V,,,_1
with 7(¢') = v. Foro’, we have

HW(C & o' @~2T @ n(c)2T) =

T 0 if C®pBo’" =0
AW(C'® po™) = { om-1 it 0@ fo’T =1
Since(, as the constant term of an affine function, can arbi-
trarily take on values if0,1}. Thus we can alway modify
C so thatC' & 8o'" =0, and therHW (C' @ Bo'T dy2T &
m(0")zT) = 0. We have proved tha¥, = 22m~2 — 2m~1,
Therefore the proof is completed.

The matrix A* has different properties depending
whetherm is odd or even. We now consider the case of
evenm.

Theorem4 Letn = 3 (mod 4), m be even andh =
2m — 1. Letw be a mapping fronV,,,_; to W* defined in
(3) such that (ajr(0,...,0) = «(1,...,1) = (1,...,1),
(b) m(B) # =(B') if B # B’ except for the case that
B =(0,...,0)andB" = (1,...,1). Let f(x) = w(y)2T,
wherez = (z1,...,Z29m-1), ¥y = (®1,...,Zm_1) and
., Tam—1), be the defining function of the se-
cret sharing. Let. = (0,...,0,1,0,...,0) € V5,,—1 be
the cheating vector, where ontyth coordinate is nonzero.

and thus it is balanced. This proves that the function Then for any vectorv = (s1,...,S2m-1) € Vom—1, We

f(x) = 7(y)zT is balanced oz, ;.

have the following:



(i) the probability of success of the cheafére P is [3]

_ %:I:Q_m*'1 ifm<e<2m-1
Peso = 3 ifl<e<m-—1

(4]

(ii) the resulting secret sharing is perfect or in other
words, the defining functiofiis balanced,

(iii) the nonlinearity off satisfiesVy = 22m~2 — 2™, (5]

Proof. The proof of the statemel(if) is similar to that of
Theorem 3 because of the properties (a) and (b) of the map-
ping = mentioned in Theorem 4. The statemefiijscan be
derived in the same way as in the proof of the previous the-
orem. As mentioned in the proof of the previous theorem, [6]
we do not need prove the stateméiif directly. From [10],

the nonlinearity of the functiori can be determined easily.

The proof is completed.

[7]
7. Conclusions and Further Extensions

We defined nonlinear secret sharing and investigated its 8]
properties for the binary case. The main motivation was
to make secret sharing immune against the TW attack. We
considered two classes of secret sharing. The first class is [9]
based on bent functions and clearly leads to non-perfect
secret sharing. The second class with balanced defining
functions includes perfect secret sharing schemes. Far bot
classes, we have proved the bounds for the probability of
successful cheating. The work can be extended by conduct-
ing investigations into nonlinear secret sharing with sbar
from an arbitraryG F'(q), whereq # 2. An interesting ex-
tension is to examine case with many cheaters who conspire
against honest participants.
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